gem-Difluoroolefination of Diaryl Ketones and Enolizable Aldehydes with Difluoromethyl 2-Pyridyl Sulfone: New Insights into the Julia-Kocienski Reaction
The direct conversion of diaryl ketones and enolizable aliphatic aldehydes into gem-difluoroalkenes has been a long-standing challenge in organofluorine chemistry. Herein, we report efficient strategies to tackle this problem by using difluoromethyl 2-pyridyl sulfone as a general gem-difluoroolefination reagent. The gem-difluoroolefination of diaryl ketones proceeds by acid-promoted Smiles rearrangement of the carbinol intermediate; the gem-difluoroolefination is otherwise difficult to achieve through a conventional Julia-Kocienski olefination protocol under basic conditions due to the retro-aldol type decomposition of the key intermediate. Efficient gem-difluoroolefination of aliphatic aldehydes was achieved by the use of an amide base generated in situ (from CsF and tris(trimethylsilyl)amine), which diminishes the undesired enolization of aliphatic aldehydes and provides a powerful synthetic method for chemoselective gem-difluoroolefination of multi-carbonyl compounds. Our results provide new insights into the mechanistic understanding of the classical Julia-Kocienski reaction.
Gao B,Zhao YC,Hu MY,et al. gem-Difluoroolefination of Diaryl Ketones and Enolizable Aldehydes with Difluoromethyl 2-Pyridyl Sulfone: New Insights into the Julia-Kocienski Reaction[J]. Chem.-Eur. J.,2014,20(25):7803-7810.